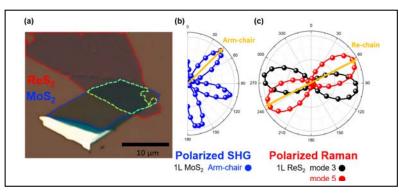
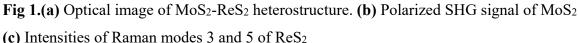
Study on interlayer interactions in MoS₂-ReS₂ heterostructures


Yeondong Choi *, Siwon Oh *, Jungcheol Kim * and Hyeonsik Cheong *


* Department of physics, Sogang University, Seoul, 04107, KOREA

Email: hcheong@sogang.ac.kr

Heterostructures stacked with two different monolayer transition metal dichalcogenides result in moiré superlattices due to the lattice mismatch or rotational misalignment [1]. Although there are many Raman studies on the heterostructure of transition metal dichalcogenide materials, there is a lack of Raman studies on the isotropic-anisotropic heterostructure. Therefore, we conducted a study on the heterostructures of MoS₂ which is an isotropic transition metal dichalcogenide material.

MoS₂ and ReS₂ monolayers were fabricated using the mechanical exfoliation method, and heterostructures were fabricated using the dry-transfer method. MoS₂ has a honeycomb structure and it is consisting of stacks of S-Mo-S sandwiches held together by van der Waals interactions [2]. ReS₂ has an anisotropic structure, 1T', because Re has one more electron that makes a Re-chain [3]. The twist angle of the heterostructure was determined by using polarization-dependent second harmonic generation for MoS₂ and polarization-dependent Raman for ReS₂. By observing interlayer interaction by low frequency Raman, it was confirmed that the two layers are interacting. It was found that the maximum intensity polarization of the mode 5 of ReS₂ varies depending on the twist angle of the heterostructure. Also, new peaks were discovered in the high frequency range of the Raman spectrum which are attributed to moiré phonons.

References

[1] Zhang, C. et al., Sci. Adv. 3, e1601459 (2017).

[2] S. Helveg et al., Phys. Rev. Lett. 84, 951-954 (2000).

[3] Sefaattin Tongay et al., Nature commun. 5, 3252 (2014).