Probing the isotropic superconducting gap in highentropy-alloy via quasi-particle scattering spectroscopy

V.T. Anh Hong¹, Harim Jang¹, Soon-Gil Jung¹, Yoonseok Han¹, Jin Hee Kim², Rahmatul Hidayati², Jong-Soo Rhyee², and Tuson Park^{1,*}

¹Center for Quantum Materials and Superconductivity (CQMS) and Department of Physics, Sungkyunkwan University, Suwon 16419, Republic of Korea

²Department of Applied Physics, Integrated Education Institute for Frontier Science and Technology (BK 21 Four) and Institute of Natural Science, Kyung Hee University, Yongin 17104, Republic of Korea

Even though the intriguing features of superconducting (SC) nature in high-entropy-alloy superconductor (HEAS) have attracted great interests, its SC pairing symmetry has not been identified. Here, we report the SC energy gap (Δ) of the HEAS Ta_{1/6}Nb_{2/6}Hf_{1/6}Zr_{1/6}Ti_{1/6} probed by using quasi-particle scattering spectroscopy. The signature of Andreev reflection is observed in the differential conductance (d*I*/d*V*) spectra below the SC transition temperature (*T*_c) of 7.85 K, which was reasonably explained by the modified Blonder-Tinkham-Klapwijk (BTK) model. The evolution of the Δ as a function of temperature and magnetic field follows the BCS theory with Δ (*T*=0)=1.36 meV. The gap-to-*T*_c ratio, 2Δ (0)/k_B*T*_c, is 4, which is larger than the BCS prediction of 3.54, indicating that the HEAS Ta_{1/6}Nb_{2/6}Hf_{1/6}Zr_{1/6}Ti_{1/6} belongs to the class of the moderate-coupled conventional superconductors.