Yu-Shiba-Rusinov states in the unconventional superconductor FeTe_{0.55}Se_{0.45}

Hyungryul Yang¹, Damianos Chatzopoulos², Koen M. Bastiaans^{2,3},

Gorm O. Steffensen³, Damian Bouwmeester^{2,4}, Alireza Akbari⁵, Genda Gu⁶,

Jens Paaske³, Brian M. Andersen³, Doohee Cho^{*1} & Milan P. Allan²

 ¹ Department of Physics, Yonsei University, Seoul 03722, Republic of Korea
²Leiden Institute of Physics, Leiden University, Niels Bohrweg 2, Leiden, CA 2333, The Netherlands
³Center for Quantum Devices, Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, Copenhagen Ø 2100, Denmark
⁴Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, Delft, CJ 2628, Netherlands
⁵ Max Planck Institute for the Chemical Physics of Solids, Dresden D-01187, Germany
⁶ Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, NY 11973, USA
*Email: dooheecho@yonsei.ac.kr

By using scanning tunneling microscopy, we investigate FeTe_{0.55}Se_{0.45}, which is widely known to host a topological superfluid and Majorana bound states. We find spatially dispersing in-gap states which allows us to investigate impurity bound states in magnetic impurities on superconducting surfaces. We use a superconducting STM tip to show that in-gap states can be tuned by moving the tip away from the impurity site and by varying the tip-sample distance. Our observations show a sub-surface magnetic impurity embedded in a low-density superfluid with large screening length which show strong resemblance to YSR in-gap states. We propose a new tip-gating mechanism within the single impurity Anderson model and our calculations demonstrate good agreement with our experimental data.