
Crystal nucleation of ice and sodium acetate by laser ablation with a single laser pulse

Hozumi Takahashi¹, Satomi Ebihara², Yusuke Takaoka¹, Yuka Tsuri³, Mihoko Maruyama^{1,4,5}, Masashi Yoshimura⁶, Seiichiro Nakabayashi², Teruki Sugiyama⁷, Yusuke Mori¹, Hiroshi. Y. Yoshikawa¹

 ¹Graduate school of engineering, Osaka University, Japan.
 ²Graduate school of science and engineering, Saitama University, Japan
 ³Graduate school of science and technology, Nara Institute of Science and Technology, Japan
 ⁴Institute for advanced co-creation studies, Osaka University, Japan
 ⁵Graduate school of life and environmental science, Kyoto Prefectural University, Japan
 ⁶Institute of laser engineering (ILE), Osaka University, Japan
 ⁷Department of Applied Chemistry, National Yang Ming Chiao Tung University, Taiwan. Email: takahashi@mp.ap.eng.osaka-u.ac.jp

Laser ablation of liquid has recently attracted much attention as a means of enforcing crystal nucleation of various materials such as proteins and small organic compounds [1]. As for the mechanism, past studies suggested that laser ablation-accompanied phenomena such as a shock wave, cavitation bubbles, and long-lasting bubbles may trigger crystal nucleation [1-4]. In this work, to further clarify the underlying mechanism, we demonstrated crystal nucleation by laser ablation with a single laser pulse, which enables us to monitor detailed spatio-temporal dynamics of laser-induced crystallization. For this purpose, crystallization of water and sodium acetate by laser ablation was investigated because these materials can be instantly crystallized upon external stimuli. Fig. 1 shows the macroscopic images of crystallization dynamics of ice induced by focused irradiation with a single laser pulse ($\lambda = 800 \text{ nm}$, $E = 240 \text{ }\mu\text{J/pulse}$, $\Delta t = 5 \text{ ps}$). Ice crystals formed radially from the laser focus, and the entire glass vial was finally filled with the crystals. From the microscopic observation of crystallization dynamics, we found that crystals always appeared next to the long-lasting bubbles, suggesting that laser-induced bubbles may play a crucial role as a site of crystal nucleation.

Fig 1. Representative crystallization dynamics of ice triggered by a single laser pulse ($\lambda = 800 \text{ nm}, E = 240 \text{ }\mu\text{J/pulse}, \Delta t = 5 \text{ ps}$). Red arrow indicates laser focus.

[1] H. Y. Yoshikawa et al., *Chem Soc Rev.* 43, 2147 (2014).
[2] H. Takahashi et al., *Appl. Phys. Express* 14, 045503 (2021).
[3] K. Ikeda et al., *Appl. Phys. Express* 8, 045501 (2015).
[4] N. Mirsaleh-Kohan et al., *Cryst. Growth Des.* 17, 576 (2017).